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Abstract 
 
Uncertainty or reliability analysis is to investigate the stochastic behavior of response variables due to the random-

ness of input parameters, and evaluate the probabilistic values of the responses against the failure, which is known as 
reliability. While the major research for decades has been made on the most probable point (MPP) search methods, the 
dimension reduction method (DRM) has recently emerged as a new alternative in this field due to its sensitivity-free 
nature and efficiency. In the recent implementation of the DRM, however, the method was found to have some draw-
backs which counteract its efficiency. It can be inaccurate for strong nonlinear response and is numerically instable 
when calculating integration points. In this study, the response function is approximated by the Kriging interpolation 
technique, which is known to be more accurate for nonlinear functions. The integration is carried out with this meta-
model to prevent the numerical instability while improving the accuracy. The Kriging based DRM is applied and com-
pared with the other methods in a number of mathematical examples. Effectiveness and accuracy of this method are 
discussed in comparison with the other existing methods. 
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1. Introduction 

In recent years, uncertainty analysis has gained atten-
tion for more accurate evaluation of design quality, 
which is to quantify how much the response or per-
formance is affected due to the uncertainty of input 
variables. Upon uncertainty quantification, reliability 
analysis can be carried out in which the failure probabil-
ity is calculated, which is of great importance to the 
design engineer. Among the various tools developed in 
this field for the last decades, the most popular methods 
are MPP based methods, which include FORM, SORM, 
and so on [1]. The methods, however, have some disad-
vantages in that first-order sensitivities of the system 

response are required. On the other hand, a new efficient 
method called univariate dimension reduction method 
(DRM) was recently proposed by Rahman [2], which is 
to calculate statistical moments by transforming a multi-
dimensional response function into multiple one-
dimensional functions. Numerical integration based on 
the appropriate quadrature is then carried out for each 
single variable function at a set of integration points. 
Once the moments are obtained, statistical PDF shape is 
identified by using the Pearson system, from which the 
probability can be calculated. This method is more trac-
table for its sensitivity-free nature and providing the 
response PDF in a few numbers of analyses. In the re-
cent implementation of the DRM by the authors, how-
ever, it was found that the method also has some draw-
backs which counteract its efficiency. The method can 
be inaccurate for strong nonlinear response and is nu-
merically instable when solving a system of linear equa-
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tions in order to determine integration points. In order to 
circumvent this problem, the response function is ap-
proximated by employing the Kriging interpolation 
method [3], which is known to be capable of more accu-
rately modeling nonlinear responses. The integration is 
then carried out with this meta-model to prevent the 
numerical instability while improving the accuracy. 
Once the first four statistical moments are determined 
by the DRM, the Pearson system [4] is applied to con-
struct the PDF of the response function. The reliability 
or failure probability can be calculated by using this 
PDF. The Kriging based DRM is applied and compared 
with the other methods in a number of mathematical 
examples. Effectiveness and accuracy of this method 
are discussed in comparison with the other traditional 
methods. Finally, a reliability based design optimization 
is conducted for a simple mathematical problem to illus-
trate the effectiveness of the proposed method. 
 
2. Review of univariate dimension reduction 

method 

Recently, the univariate dimension reduction method 
(DRM) was developed by Rahman and Xu [2] and was 
applied later to the RBDO problems by Lee, et al. [5]. 
The idea is to efficiently compute statistical moments of 
the response function, from which the PDF curve can be 
constructed by using the Pearson system. CDF is then 
obtained by the integration of the PDF curve, from 
which the probability of the response function can be 
determined. During the moments calculation, the re-
sponse function of N dimension is approximated into N 
one-dimensional functions by using the idea of additive 
decomposition, where N is the number of random vari-
ables. Then the original N-dimensional integral of the 
statistical moment is replaced by a number of one-
dimensional integrals, which is much cheaper to com-
pute. The idea is briefly reviewed here. The DRM is to 
evaluate the following statistical moment defined as 
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where m represents the order of the moment being cal-
culated, G is the response of the system, and (x1, x2,…, 
xN) are the random input variables. Additive decomposi-
tion concept is applied to approximate the response 
function as follows. 
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Then Eq. (1) becomes multiple one-dimensional inte-
grations that are easier to compute. After replacing G 
in Eq. (1) by Eq. (2), one-dimensional integral comes 
up in the resulting expression as follows. 
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where i is an arbitrary integer that is smaller than m 
and fXj (xj) is the marginal probability density of Xj, 
which can be calculated from the known joint density 
of X. To compute this integral, a moment-based 
quadrature rule is introduced, which will allow nu-
merical integration of the function. The raw statistical 
moments of the random input variables are used to 
calculate the integration points and weights required 
for the integration. By applying to a moment-
consistent integration rule [2], the following linear 
system can be constructed. 
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where ,j iµ  represents the ith raw moment for the jth 
random variable and n is the number of integration 
points. The solution of the linear system becomes the 
coefficients of the following nonlinear equation 
whose solution becomes the integration points. 
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Once a set of integration points has been determined, 
numerical integration can be conducted by obtaining 
the corresponding weights as follows. 
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where wi,k represents the weight at the kth integration 
point for the jth random variable. Then the integral of 
Eq. (3) becomes the following algebraic operation: 
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Note that this method requires ( )1 1n N− +  number 
of analyses for the moments calculation if the nomi-
nal point is used in common at each one-dimensional 
integration. In case of moderate nonlinearity of the 
response function, one can get fairly accurate results 
with n=5 and under. More accuracy or higher non-
linearity can be accommodated by further increasing 
the number of integration points n. As will be shown 
later, however, the result for some problems is not as 
good as expected, nor is it converged despite n being 
increased. Furthermore, singularity of matrix in Eq. 
(4) is often observed at higher n, which leads to the 
breakdown of the process. To circumvent this prob-
lem, the response function is approximated by em-
ploying the Kriging interpolation method [3], which 
is known to be capable of more accurately modeling 
nonlinear responses. The integration is then carried 
out with this meta-model to prevent numerical insta-
bility while improving the accuracy. 
 

3. Approximating the response function via 
Kriging interpolation technique 

When constructing approximation models from a 
set of sample data, response surface techniques based 
on polynomial regression have been in the majority 
for a long time due to its simplicity. This method, 
however, has its origin from the physical experiments 
in which the results can vary from each other at the 
same design point. Therefore, a number of new model 
building strategies have recently been proposed, 
which are especially suited for a deterministic com-
puter response that always produces the same result at 
a design point. Unlike the traditional regression 
model, it is more advantageous for this model to pre-
dict exactly the calculated responses at the sample 
points, and control the flexibility or smoothness of the 
function at the untried points. There have been two 

approaches in this direction. One is the moving least-
squares (MLS) method proposed by Lancaster and 
Salkauskas [6], and its improved version referred to 
as the stepwise MLS (SMLS) method. The idea is to 
start with a weighted least squares formulation for an 
arbitrary fixed point, and then move this point over 
the entire parameter domain, where a weighted least 
squares fit is computed and evaluated for each point 
individually. In the SMLS method, the stepwise re-
gression scheme is further employed by adaptively 
selecting basis functions in order to achieve the best 
approximation. So, compared to the MLS, the SMLS 
improves numerical accuracy. The MLS method has, 
however, some drawbacks in that it is not easy to find 
the proper basis functions which contribute the most 
to the accuracy of the approximation. Besides, the 
parameter in the weighting function that controls the 
degree of interpolation/approximation adversely af-
fects the degree of smoothness, i.e., if the parameter is 
selected to get closer to the interpolated function, one 
tends to get poor smoothness of the function, and vice 
versa. The other approach is the Kriging interpolation 
or DACE method proposed by Sacks et al., which is 
employed in this study. In the Kriging method, there 
is a similar function named correlation and its associ-
ated parameter. Unlike the MLS method, the parame-
ter in the Kriging method is used only to control the 
degree of smoothness because it always interpolates 
the response at the sample points. Besides, the 
Kriging method does not require one to choose basis 
functions as used in the MLS. The algorithm is briefly 
reviewed as follows. 

Given a set of n sample points [ ]1 2, ,..., n
′=X x x x  

with NR∈x  and the responses [ ]1 2, ,..., ny y y ′=Y . 
Let us express true y as a summed realization of a 
regression model and a random function 

 

( ) ( ) ( )y z′= +x f x xβ   (8) 

 
where the number of trial functions f(x) and regres-
sion parameters β  is k. Random process z(x) is 
assumed a statistical error, having a normal distribu-
tion with zero mean and variance 2σ , i.e.,  
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where σ  is the standard deviation of the response, 
and Rij is the correlation matrix in which the values 
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Fig. 1. Kriging approximated function. 
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Fig. 2. MLE function. 

are determined by the correlation function. At untried 
arbitrary point x, one can define 
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where ( ) ( ), ,i ir R θ=x x x . 
 

The surrogate y is expressed by using a linear pre-
dictor for predicting at untried point x: 
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where c(x) is a set of functions interpolating the given 
Y data at the current x. Matrix F with dimension n× k 
is defined from Fij =fj(xi), and the error vector Z is 
from Zi = z(xi). Then the error is defined as 
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To keep the predictor unbiased, we demand 
 

( ) ( )′ − =F c x f x 0  or ( ) ( )′ =F c x f x  (13) 

 
This is a kind of constraint for the weight functions. 

In a simple case where f(x) = [1], and [ ]1,1,...,1 ′=F  
which is 1N ×  vector, 

 

( ) ( )
1

1
N

i

i

c
=

′ = =∑F c x x  (14) 

 
which means that the sum of the weight or the coeffi-
cient functions should be unity. Under this condition, 
MSE becomes 
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c(x) is determined such that MSE is minimized sub-
ject to the constraint. Then the surrogate y becomes 
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where ( ) ( )11 1−∗ − −′ ′F R F F R Yβ =  , which is ( )1k ×   

vector. Minimum MSE  becomes 
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Note here that f, r are functions of the current point x 
whereas F, R, Y and ∗β  are constants. Unlike the 
case of regular regression, the MSE given by Eq. (17) 
is a function of x, which can be plotted.  
In the Kriging method, there are several types of the 
correlation function. In this study, the Gaussian type 
function is used as follows. 
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where d is distance between the two points, and h is 
an arbitrary correlation parameter which affects the 
smoothness of the model. In most Kriging studies, h 
is determined by the method of maximum likelihood 
estimate (MLE). According to Etman [7] and Sasena 
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[8], however, the MLE method is not only computa-
tionally expensive, which requires an additional op-
timization process, but also the quality of the obtained 
parameter is questionable. 

In this study, the Kriging approximation is applied 
to one dimensional function with 3 or 5 numbers of 
points. As a feasibility study, consider a simple test 
function 

 
3 21.5y x x x= − + +  (19) 

 
Using 5 sample points given by { }1, .5,0,.5,1ix = − −  

and their responses, an approximate function is plot-
ted for four h’s 0.1, 1.0, 2.0 and 10.0 in Fig. 1. It is 
observed that the curve becomes smoother and gets 
closer to the original function as h is increased. In Fig. 
2, the MLE function is also plotted in terms of h, in 
which the optimum solution for h is found at the 
lower limit value. It is obvious that the solution is 
wrong, which yields a poor fit as shown in Fig. 1. 
This agrees with the findings [7, 8] that the MLE 
method can be doubtful. If, on the other hand, h is 
increased constantly, a singularity problem for R ma-
trix is encountered, in which all the row values be-
come similar and get closer to the unit value. Based 
on these observations, a new and simple criterion for 
proper choice of h is proposed, i.e., large h is chosen 
such that the curve is sufficiently smooth but not so 
large as to cause singularity of the R matrix.  

Remembering that in the R matrix the maximum 
value is unity at the diagonal location while it de-
creases as the location gets off-diagonal, the level of 
singularity is determined by the ratio dmax/h, where 

dmax is the maximum distance among the design 
points. After a number of trials, the proper value for 
this ratio is found to be 0.5, which produces the 
minimum value in the matrix at ( )2exp 0.5− =0.779. 
In this test problem, this corresponds to h=4. 
 

4. Axial DOE study 

In the implementation of the DRM, the one-
dimensional function ( )iG x%  given in Eq. (2) is ap-
proximated by the Kriging method based on the re-
sponse values at the sampling points defined axially 
along xi. If the nonlinearity of G or input variances are 
small, 3 sampling points are fine including the nomi-
nal point. Otherwise, 5 points are necessary. This 
amounts to total 2N+1 and 4N+1 number of sample 
points, respectively.  

Selecting proper sample point locations to best ap-
proximate the response is another important task. 
Since there is no absolute criterion on the best loca-
tion of the points, they are selected in an ad hoc way 
based on the number of trials. To this end, two prob-
lems are studied to determine 5 sample point loca-
tions. First is a single variable problem, in which the 
mean values are varied under a fixed value of stan-
dard deviation as follows. 

 

( ) ( )( )2 2 sin 2
4

X X
G X

+
=  (20) 

 
where ( )2,0.3X N µ→ , µ =1, 2.5, 3.4, 4.1, 5.6, 6.3, 
7. In Fig. 3, errors of standard deviation and kurtosis 
of G against MCS simulation with 1E6 numbers are 

 

                                    (a) Standard deviation error                             (b) Kurtosis error 

Fig. 3. Errors of standard deviation and kurtosis of Eq. (20). 
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plotted for a number of sample point trials. In the 
figure, the two numbers denote sigma values to the 
right of the mean point, e.g., if they are (1, 3), then the 
5 points are 3 , , 0, , 3σ σ σ σ− −  with respect to the 
mean value. The accuracy is slightly better at (1.5, 3). 
But it fails at µ =7. Next is a two variables problem, 
in which the standard deviations of the two input 
variables are varied together under a fixed mean val-
ues. 
 

( )1 2 4 2 4
1 2 2

1,
1 2 5

Y X X
X X X

=
+ + +

 (21) 

 
where ( )20, , 1,2jX N jσ→ = . In Fig. 4, errors of 
mean and standard deviation of G against MCS are 
plotted. In this case, (1, 3) is much better than the 
other two. The conclusion from these two is that (1, 
3) is chosen in this study, for the 3 points, one just 
chooses a mean value intuitively between (1, 3), 
which yields 2 ,0,2σ σ−  with respect to the mean 
value. This corresponds to (2.3%, 50%, 97.7%) in the  
case of the normal distribution. In the 5 point case, 
this is (0.13%, 15.9%, 50%, 84.1%, 99.87%). 

In the case of non-normal PDF, corresponding lev-
els can be calculated from the CDF values to match 
these values. Once the approximate function is con-
structed by the Kriging method, one can perform 
numerical integration of Eq. (3) by using a standard 
quadrature rule at as many integration points as pos-
sible because the function value is obtained not from 
the original but from the surrogate model. In this 
study, adaptive Simpson quadrature is used. Based on 
this approach, the statistical moments can be success-
fully computed without singularity problem while 

improving the accuracy. 
 

5. Pearson system for PDF construction 

Once the four statistical moments (mean, standard 
deviation, skewness and kurtosis) are obtained, the 
Pearson System [4] can be used to construct the PDF 
of the response. The detail expression of the PDF can 
be achieved by solving the differential equation as 

 

2
0 1 2

1 dp a x
p dx c c x c x

+= −
+ +
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where a, c0, c1 and c2 are four coefficients determined 
by the first four moments and expressed as 
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where 1β  is the square of skewness, 2β  is the kur-
tosis, and 2µ  is the variation. 

Generally, there are seven distribution types in the 
Pearson System based on the four coefficients, and 
among some types, subtypes are present. Normally, 
PDF can be successfully constructed based on the 
first four moments. However, the Pearson system can 
easily fail to construct the PDF, especially when the 
locations of statistical moments in the Pearson curve 
simultaneously approach the limit curves of several 
distribution types as shown in Fig. 5. The horizontal 
axis is for the square of skewness and vertical axis is 
for the kurtosis. 

 

   
                                            (a) Mean error                                                                                 (b) Standard deviation error 
 
Fig. 4. Errors of mean and standard deviation of Eq. (21). 
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Fig. 5. Pearson curve. 

 

  
Fig. 6. Frequency diagram of MCS & PDF of pearson system 
for LN(0,1). 
 

In order to verify the Pearson system, several exist-
ing distributions are tested, which is to generate 1E6 
random data of each distribution, compute first four 
moments, construct PDF and CDF curve and com-
pute the difference from the original CDF as an accu-
racy measure. As shown in Table 1, the difference is 
quite satisfactory except in three cases. In the case of 
LN(0,1), the difference is 8.46E-2 which is not small. 
As shown in Fig. 6, however, the PDF is one of the 
extreme cases, and is not likely to occur. Three other 
cases failed to produce PDF. Tests are also conducted 
for arbitrary distributions made by combining two 
normal distributions X ~ N(10,3) and Y ~ N(3,2), the 
results of which are given in Table 2. Again, poor 
accuracies are found in some cases. As mentioned 
above, this PDF may also rarely occur in normal 
problems as shown in Fig. 7 for the Y4 case. In Fig. 5, 
failure cases are marked as blue dots, which are at 
type III which is the boundary of type VI and I.  

The trouble lies in the calculation of coefficients 
of a specific distribution type, which results in a  

 
 
Fig. 7. Frequency diagram of MCS & PDF of pearson system 
for Y4. 

 
numerical instability. In this case, two PDFs are gen-
erated by fixing the first three statistical moments, 
and incrementally adjusting the original kurtosis by 
slightly increasing and decreasing the value until two 
PDFs are successfully constructed. If the two PDFs 
are close to each other within 0.001, either one is used. 
Otherwise, a Kriging interpolated curve is generated 
from the two PDFs. This method of adjustment was 
originally studied by Youn et al. [18]. In Fig. 8, PDF 
after the adjustment is drawn for the case of GEV(-1, 
100), which results in excellent agreement with the 
original PDF. 
 

6. Examples of uncertainty analysis 

Four examples are studied to verify the developed 
method. First two are from Rahman [2]. 

 

( )

( )

1 2 4 2 4
1 2 2

1 2 2 2 2 2
1 2 1 2

1, &
1 2 5

1, exp
1 100 2

Y X X
X X X

Y X X
X X X X

=
+ + +

⎛ ⎞
= −⎜ ⎟+ + +⎝ ⎠

(23) 

 
 
where ( )20, , 1,2jX N jσ→ = . Note that the first 
one is already used for the axial DOE study. As can 
be seen in Fig. 9 the two functions are heavily de-
pendent on either variable, i.e., X2 and X1 respectively. 
Kriging based DRM (named KDRM hereafter) is 
conducted to explore the trend of output standard 
deviation with the increase of two input standard de-
viations. In Fig. 10 are the results of the study in 
which the results by the conventional DRM are com-
pared along with those by the Monte Carlo simulation  
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Table 1. Validation of existing distribution. 
 

1 N(10,3) 1 .00E+01 3.00E+00 2.1 5E-03 3.00E+00 Normal 4.62E-04

2 N( 3,2) 3 .00E+00 2.00E+00 -6.88E-0 4 3.00E+00 Normal 5.85E-04
3 X2( 1) 1 .00E+00 1.41E+00 2.8 2E+00 1.48E+01 Type 6 Fail

4 X2( 9) 9 .00E+00 4.24E+00 9.3 9E-01 4.32E+00 Typ e I 3.20E-04
5 X2(45) 4 .50E+01 9.48E+00 4.1 8E-01 3.26E+00 Typ e I 2.01E-04

6 EP( 1) 1 .00E+00 1.00E+00 2.0 0E+00 8.99E+00 Type 6 Fail
7 EP( 2) 2 .00E+00 2.00E+00 1.9 9E+00 8.93E+00 Typ e I 7.78E-03

8 EP(45) 4 .50E+01 4.50E+01 2.0 1E+00 9.05E+00 Typ e I 2.65E-02

9 EV(1 ,1) 4 .25E-01 1.28E+00 -1.14E+0 0 5.42E+00 Type 6 3.13E-03
10 EV(2 ,1) 1 .42E+00 1.28E+00 -1.13E+0 0 5.38E+00 Type 6 3.22E-03

11 EV(2 ,2) 8 .43E-01 2.57E+00 -1.14E+0 0 5.42E+00 Type 6 3.89E-03
12 EV(2 ,5) -8.96E-01 6.41E+00 -1.13E+0 0 5.38E+00 Type 6 3.02E-03

13 F( 10,10 0) 1 .02E+00 4.84E-01 1.0 5E+00 4.78E+00 Type 6 7.35E-04
14 F(100, 1 0) 1 .25E+00 7.51E-01 3.3 3E+00 3.32E+01 Type 4 2.58E-03

15 F(100,10 0) 1 .02E+00 2.07E-01 6.2 5E-01 3.72E+00 Type 4 3.25E-04

16 G(1,1) 1 .00E+00 9.99E-01 2.0 0E+00 9.00E+00 Typ e I 2.18E-02
17 G(4,1) 4 .00E+00 2.00E+00 9.9 7E-01 4.49E+00 Typ e I 4.42E-03

18 G(5,0.3) 1 .50E+00 6.71E-01 8.9 1E-01 4.18E+00 Type 3 3.18E-04
19 GEV(0.1,100 ,1) 6 .96E+01 1.49E+02 1.9 2E+00 1.12E+01 Type 6 2.94E-03

20 GEV(-0.5 ,100,1) 2 .38E+01 9.26E+01 -6.33E-0 1 3.25E+00 Typ e I 3.57E-03
21 GEV( -1 ,100,1) 1 .05E+00 9.99E+01 -1.99E+0 0 8.91E+00 Type 6 Fail

22 GPR( 0.1,100,2) 1 .13E+02 1.24E+02 2.7 9E+00 1.72E+01 Type 6 3.52E-04

23 GPR (-1.0,100, 2) 5 .20E+01 2.89E+01 -6.16E-0 5 1.80E+00 Typ e I 3.52E-04
24 GPR (-1.1,100, 2) 4 .96E+01 2.66E+01 -8.32E-0 2 1.79E+00 Typ e I 5.86E-04

25 W(2, 2) 1 .77E+00 9.26E-01 6.3 0E-01 3.25E+00 Typ e I 3.46E-03
26 W(2,10) 1 .90E+00 2.29E-01 -6.39E-0 1 3.57E+00 Typ e I 3.31E-03

27 T( 5) -2.59E-03 1.29E+00 2.5 9E-02 8.42E+00 Type 4 2.82E-04
28 T( 9) 3 .68E-05 1.13E+00 2.0 8E-03 4.17E+00 Type 4 6.60E-04

29 T(45) -7.26E-04 1.02E+00 3.9 8E-03 3.14E+00 Type 4 4.90E-04

30 RAYL( 1) 1 .25E+00 6.56E-01 6.3 2E-01 3.25E+00 Typ e I 3.13E-03
31 RAYL(10) 1 .25E+01 6.56E+00 6.3 3E-01 3.25E+00 Typ e I 3.02E-03

32 LN(0,0.1 ) 1 .01E+00 1.01E-01 2.9 9E-01 3.16E+00 Type 6 3.04E-04
33 LN(0, 1 ) 1 .65E+00 2.17E+00 6.0 5E+00 9.76E+01 Type 6 8.46E-02

Log Normal

Standard Deviation Pearson
t ype

Generalized
Pareto

Extreme
Value

Generalized
Extreme

Value

Gamma

Weibull

Student-t

Rayleigh

Normal

Chi-square

Exponen tial

F

Distribut ion Type Mean Skewness Kurtosis ( )
( )

M C S

p ea r so n

F x
MA X

F x

⎡ ⎤
⎢ ⎥
⎢ ⎥−⎣ ⎦

with 1E6 numbers. Both 2N+1=5 (3 points axially) 
and 4N+1=9 (5 points axially) points are tried. In the 
first problem, the KDRM is better than the DRM at 3 
points, and is comparable at 5 points. In the second 
problem, the KDRM is again better than the DRM at 
3 points, but is worse than the DRM at 5 points. Third 
problem is also from Rahman [2], which is 

 
( ) 2 3

1 2 3 1 1 2 1 3 3, , 3Y X X X X X X X X X= − + +  (24) 

 

( )2Weibull 0.918, , 1,2,3jX jσ→ = . As is shown in 
Fig. 11, accuracies of the two methods are similar. 

Magnitudes of the four moments are compared in 
Table 3 for the case ( )2Weibull 0.918,0.210 ,jX →  

1,2,3j = from which the agreements of the two 
methods are found. Last example is from Zhao & 
Ono [9], which is 
 

( ) 2 2 4
1 2 3 1 2 3, , 2Y X X X X X X= +  (25) 

 
where ( )2Lognormal 1.0, ,jX σ→ 1,2,3.j =  Fig. 
12 shows the result. Accuracy of KDRM is poor at 3 
points whereas similar at 5 points. Magnitudes of the 
four moments are compared in Table 4 for the case  
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Table 2. Validation of arbitrary distribution. 
 

X Normal 4.62E-04 X + Y Normal 3.22E-04  -X + Y Normal 4.470E-04

X2 Type 1 2.903E-03 X + Y2 Type 1 1.804E-02  -X + Y2 Type 1 1.744E-02

X3 Type 6 1.001E-03 X + Y3 Type 6 2.427E-01  -X + Y3 Type 6 2.429E-01

X4 Type 6 3.871E-02 X2 + Y Type 1 2.198E-03 -X2 + Y Type 1 2.048E-03
Y Normal 5.854E-04 X2 + Y2 Type 1 1.414E-03  -X2 + Y2 Type 1 3.09E-03

Y2 Type 1 7.42E-02 X2 + Y3 Type 6 1.71E-02  -X2 + Y3 Type 4 5.28E-02

Y3 Type 6 2.47E-01 X3 + Y1 Type 6 1.65E-03  -X3 + Y1 Type 6 1.77E-03

Y4 Type 6 6.93E-01 X3 + Y2 Type 6 1.56E-03  -X3 + Y2 Type 6 1.91E-03

X3 + Y3 Type 6 2.19E-03  -X3 + Y3 Type 6 3.65E-03

EquationPearson
type

Pearson
type

Pearson
typeEquation Equation

( )
( )

MC S

pearson

F x
M AX

F x

⎡ ⎤
⎢ ⎥
⎢ ⎥−
⎣ ⎦

( )
( )

MCS

pearson

F x
MAX

F x

⎡ ⎤
⎢ ⎥
⎢ ⎥−
⎣ ⎦

( )
( )

MC S

pearson

F x
M AX

F x

⎡ ⎤
⎢ ⎥
⎢ ⎥−
⎣ ⎦

Table 3. Y=1/(1+X1
4+2X2

2+5X2
4). 

 
  MCS DRM Error % KDR Error %

Mean 3.5551 3.5553 0.01 3.5557 0.02 

STD 1.3724 1.3708 0.12 1.3721 0.02 

Skew 0.406 0.3016 25.71 0.407 0.25 

Kurt 3.0346 2.9576 2.54 3.0412 0.22 

 
 

Table 4. Y=Exp(-1/(1+100X1
2+2X2

2+X1
2X2

2)). 
 

  MCS DRM Error % KDR Error %

Mean 3.1428 3.143 0.01 3.1432 0.01 

STD 0.9296 0.9277 0.2 0.9282 0.15 

Skew 1.1539 1.1458 0.7 1.1434 0.91 

Kurt 5.6388 5.6507 0.21 5.6124 0.47 

 

  
Fig. 8. Frequency Diagram of MCS & PDF of Pearson System 
for GEV(-1,100). 
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(b) Y=EXP(-1/(1+100X1
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Fig. 9. Shape of the two functions in Eq. (23). 

 
( )2Lognormal 1.0,0.1 , 1,2,3jX j→ =  from which 

the agreements of the two methods are found too. 
 

7. Discussions and conclusions 

In the recent study of reliability analysis, the di-  
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(a) Standard deviation of first function 

 

 
(b) Standard deviation of second function 

 
Fig. 10. Standard deviation of the two functions in Eq. (23). 
 
 

 
Fig. 11. Standard deviation of the function in Eq. (24). 
 
mension reduction method (DRM) has emerged as a 
new alternative choice due to its sensitivity-free na-
ture and efficiency. During the implementation of the 
DRM, however, the method was found to have some 
drawbacks which counteract its efficiency. It was 
found to be inaccurate for strong nonlinear responses 
such as the first and second problems of this paper 
and can be numerically instable when calculating  

 
 
Fig. 12. Standard deviation of the function in Eq. (25). 
 
integration points with more than 5 points. As a re-
medial approach to this, the Kriging interpolation 
technique is employed to build a surrogate function, 
by which the integration is carried out. From the four 
problems tested, accuracies of the Kriging based 
DRM and classical DRM are found to be similar 
each other. Clear advantage of the Kriging based 
DRM in view of accuracy is not found since the 
number of problems and trial cases is still too small.  

The Kriging based DRM, however, is more tracta-
ble because the computation does not fail. Many more 
test problems along with the parametric variations 
used in the Kriging method are necessary to be con-
ducted in the future.  
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